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Abstract

We derive and demonstrate a practical, analytic, versatile and accurate algorithm designed to impose Dirichlet bound-
ary conditions (specified boundary velocity) on the edge nodes of a lattice Boltzmann fluid simulation space, valid for sit-
uations in which the fluid at the boundary is subject to a force. The current algorithm models the lattice fluid on boundary
and bulk nodes to the same accuracy and in a demonstrably equivalent manner. Whilst the new method presented here
applies to rectangular geometries, it adds to our previous method [I. Halliday, L.A. Hammond, C.M. Care, A. Stevens,
J. Phys. A: Math. Gen. 35 (2002) 157]: (i) the condition of mass-conservation, (ii) the ability to subject boundary fluid
to a force and (iii) the ability to treat a range of complicated geometries with unimpaired accuracy.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Lattice Boltzmann (LB) flow simulation is adapted to certain niches; canonically, time-dependant, complex,
multi-component and particle-laden flows [1]. As with any numerical method, representation of boundary
conditions is central.

This article is an update of our attempts to develop a comprehensive, robust, accurate and adaptable lattice
closure, able to impose boundary conditions on a LB fluid simulation. What we report here (in a self-con-
tained manner, note) extends previous work [2,3] to facilitate (i) Navier-type boundary conditions and (ii) flu-
ids under external forces, such as are applied to produce fluid–fluid interfaces; the essentials of multi-
component LB boundary conditions for e.g. wetting. Like previous work, our current method is designed
to give boundary fluid in transient flow near the boundary the same dynamics and accuracy of representation
as the bulk lattice fluid (at all times), it applies transparently to complex boundary geometries (corners) with
no diminution of accuracy and it admits of the representation of moving fluid boundaries, including those
crossed by fluid.
0021-9991/$ - see front matter � 2008 Elsevier Inc. All rights reserved.
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Lattice closure methods in LB [1] fall into two sets. One provides Lees–Edwards type boundary conditions
[4], typically for calculation of colloidal phase properties and phase separation kinematics [5,7]. The present
method belongs to a second class of LB boundary closure, designed to impose a specified velocity distribution
(possibly corresponding to a slip) on the defined surfaces which comprise the boundary.

In general, solutions of the Navier–Stokes and continuity equations, ðvðr; tÞ; P ðr; tÞÞ, may be closed by
Dirichlet boundary conditions on fluid velocity:
vðr0; tÞ ¼ u0ðr0; tÞ: ð1Þ

Here r0 denotes a position on the flow domain boundary and u0ðr0; tÞ a known boundary fluid velocity distri-
bution. Fluid is said to stick; to have ‘no-slip’ against solid surfaces; then u0ðr0; tÞ corresponds to the velocity of
any solid boundaries. However, there have been doubts about the no-slip condition for more than a century
[8]. Indeed, fluid close to a dynamic contact line must slip. One theory relates the boundary–tangent compo-
nent fluid in the DCL, the slip velocity, vs, to the tangential component of fluid shear at the surface:
vsðr0; tÞ ¼ b
ovt

oxn

� �
r0t

; ð2Þ
in which the constant b is the slip length.
There are several implementations of the rest boundary condition in LB [9–17]. It is not our purpose to

investigate the origin or applicability of these; rather, we aim to design a tractable, practical and versatile
LB lattice closure step for a known boundary velocity (which may, like that in Eq. (2), derive from some model
of slip), local mass conservation and a known boundary external force distribution.

Our method is chosen to be node-based, in contrast to robust (but less tractable) mid-link bounce-back con-
ditions. Whilst the location of the boundary in our method must be known a priori, that boundary could (for a
complex shape, say) be assumed to lie at any distance from a node.

After reviewing salient theory in Section 2, we consider a flat boundary at which fluid is moving with spec-
ified velocity, subject to a specified, external body force, in Section 3.1. We summarize equivalent results for
internal and external corners in Section 3.2. To evaluate our method, Section 4 presents accuracy plots, pro-
files of solved, pressure driven duct flows with moving and stationary boundaries and stream functions.

Only at certain stages in our analysis will it be necessary to use a particular LB model. At such points we
will use a 2D, nine velocity D2Q9 single relaxation time LBGK model of Qian and d’Humières [18], as derived
by Hou et al. [19].

2. Background

Collision and propagation of LBs momentum density function, fiðr; tÞ; i ¼ 0 . . . 8, may be expressed [1]:
fiðrþ cidt; t þ dtÞ � f yi ðr; tÞ ¼ fiðr; tÞ þ Xij f ð0Þj ðq; vÞ � fjðr; tÞ
� �

þ /i; ð3Þ
where dt represents the time step, f yi ðr; tÞ the post-collision, pre-propagate value of the momentum density and
Xij the collision matrix [1]. For link vectors, ci, and indexing of the velocity basis ci see Fig. 1. The term /i in
Eq. (3) is responsible for introducing an external force on the fluid and is further discussed at the end of this
section. Until further notice, suppose that /i ¼ constant everywhere, corresponding to uniform external force
on the fluid.

In general, in D dimensions, the lattice fluid’s kinematic viscosity is determined by the degenerate eigen-
value, K, of the circulant, symmetric collision matrix Xij ¼ Xji with the 1

2
DðDþ 1Þ stress mode eigenvectors

j ciacibi. For the single relaxation time LBGK model [18], Xij and K are:
Xij ¼
1

s
dij; K ¼ 1

s
; ð4Þ
and, for our particular D2Q9 LBGK model the fluid’s kinematic viscosity is [19]:
m ¼ 2s� 1

6

� �
dx2

dt
: ð5Þ
Note that the lattice spacing dx ¼ 1 throughout and that the Xij or s are assumed to be known.



Fig. 1. A boundary node on a horizontal wall, immediately prior to a collision step. Links i ¼ 1; 2; 3 all point into solid boundary, live

links i ¼ 0; 4 . . . 8 all point into fluid. The supposed rest wall location is denoted by the horizontal dashed line. fis exist for links depicted
with an arrowhead, lack of fis is denoted by an open circle.
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The macroscopic fluid density and momentum, obtained from moments of the fis:
q ¼
X

i

fi;

qv ¼
X

i

fici;
ð6Þ
alone determine the principal contribution to fi, the so-called equilibrium distribution function, f ð0Þi (other,
smaller, contributions to fi are discussed around Eq. (12), shortly). For all LB models f ð0Þi is linear in q:
f ð0Þi ðq; vÞ ¼ qP ð2Þðv � ciÞ; ð7Þ

where the second-order polynomial P ð2Þðv � ciÞ depends upon the particular LB model. For the LBGK model:
f ð0Þi ðq; vÞ ¼ tpq 1þ v � ci

c2
s

� v2

2c2
s

þ ðv � ciÞ2

2c4
s

" #
; ð8Þ
where tp ¼ 4=9, 1/9, 1/36 for i ¼ 0; i even, i odd respectively and the speed of sound cs ¼ 1=
ffiffiffi
3
p

[19,18]. The f ð0Þi

provide the principal contribution to fi and have the following moments with the lattice links ci:
q ¼
X

i

f ð0Þi ;

qv ¼
X

i

f ð0Þi ci;
ð9Þ

Pð0Þab � c2
s qdab þ qvavb ¼

X
i

f ð0Þi ciacib; ð10Þ

c2
s qðucdab þ uadbc þ ubdacÞ ¼

X
i

f ð0Þi ciacibcic; ð11Þ
in which Eq. (10) defines a momentum flux tensor. The squared speed of sound, c2
s ¼ 1=3 and lattice symmetry

constant k4 ¼ 1=9 in the LBGK D2Q9 model.
The effects on the lattice fluid of higher order contributions to fi, denoted f ðn>0Þ

i , are understood through the
Chapman–Enskog expansion method [1]. Taking the particular Chapman–Enskog approach of Hou et al. [19]
write:
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fi ¼ f ð0Þi þ dtf
ð1Þ
i þ � � � þ dn

t f ðnÞi þ � � � ; ð12Þ

from which Navier–Stokes behaviour (with a uniform body force acting) may be recovered with n < 2 [19]
(note in passing that, for consistency, a boundary node momentum density, fi, should therefore be correct
to f ð1Þi ). Derivation, by Chapman–Enskog analysis, of such Navier–Stokes behaviour only trivially affected
by the presence in our evolution Eq. (3) of the term /i if the latter is has zero derivatives. However, when
/i varies it is necessary to modify the definitions (9) and perform a more careful Chapman–Enskog analysis
in order to obtain Navier–Stokes behaviour at the same level of accuracy [20]. We return to this issue below.
For the moment, Eq. (9) ensures that zeroth and first moments of f ð1Þi are zero:
X

i

f ðn>0Þ
i Di ¼ 0; n > 0; ð13Þ
where Di ¼ 1; cix; ciy but the second moments of the the f ð1Þi are not zero. Using a Chapman–Enskog method
directly adapted from that of Hou et al. [19], it is straightforward to show that the latter provide a local expres-
sion for the lattice fluid rate of strain:
K
2
� 1

� �X
i

f ð1Þi ciacib ¼ 2mqSab; ð14Þ
where Sab ¼ 1=2ðoavb þ obvaÞ and, recall, K ¼ 1
s for an LBGK model. It is convenient to re-express Eq. (14):
X

i

f ð1Þi cciab ¼ 2mqSab; cciab �
K
2
� 1

� �
ciacib: ð15Þ
In D dimensions, Eq. (15) number DðDþ 1Þ=2; Eq. (13) number ðDþ 1Þ. In total Eqs. (15) and (13) provide
ðDþ 1ÞðD=2þ 1Þ equations for Q f ð1Þi s. Therefore, in the case of a D2Q9 LBGK model, Eqs. (13) and (15)
yield a total of six equations for Q ¼ 9, f ð1Þi ’s. Also for a D2Q9 LBGK model, Eqs. (4) and (5) may be used
to simplify Eq. (15):
X

i

f ð1Þi ciacib ¼ �2c2
s qsSab: ð16Þ
Using Eqs. (3) and (12) (with n < 2), it is possible to express the collision part of the evolution as a relaxation
of (just) the f ð1Þi component of fiðr; tÞ:
f yi ðr; tÞ ¼ f ð0Þi ðq; vÞ þ f ð1Þyi � dt

X
i

dij � Xij

	 

f ð1Þj

" #
þ /i þ o d2

t f ð2Þi

� �
; ð17Þ
that is collision may be represented by a replacement:
f ð1Þi ! f ð1Þyi ; f ð1Þyi ¼
X

i

ðdij � XijÞf ð1Þj ; ð18Þ
and the addition of source term, /i; note that we have set dt ¼ 1 here. In the current context, using Eqs. (4),
(18) simplifies to make LBGK an attractive option:
f ð1Þyi ¼ 1� 1

s

� �
f ð1Þi : ð19Þ
Let us now consider the term /i in Eqs. (3) and (17). /i is a source term used, so far, to impress a uniform exter-
nal force on the lattice fluid at the Navier–Stokes level, say to represent a uniform pressure gradient, g. For
simplicity, we have neglected spatial variation in the macroscopic force, taking the macroscopic momentum
equation arising from Eq. (3) to be:
o

ot
qva þ

o

oxb
qvbva ¼ �

o

oxa
qþ o

oxb
ð2qmSabÞ þ ga �

X
i

/icia

" #
; ð20Þ
in which all other symbols and notations have their usual meaning. We note in passing that forcing a fluid in
the bulk of the simulation lattice must conserve nodal density, hence:
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XðQ�1Þ

i¼0

/i ¼ 0; ð21Þ
but, since a force is acting,
PðQ�1Þ

i¼0 /ici 6¼ 0.
Now, the relationship between the /is and a variable macroscopic force has been considered by Ladd and

Verberg [21] and by Guo et al. [20]. One instance of the use of a variable body force arises in applying inter-
facial tension in LB models. All multi-component lattice Boltzmann fluids have interfaces produced by phase
index coupled pressure tensor fluctuations within what is a single effective fluid [1]. These fluctuations can be
considered as (segregating) external forces of variable direction and magnitude, impressed in certain regions of
a single fluid. Such interface forcing is represented by an appropriate choice of source term /i in Eq. (3) and, in
bulk simulations or with periodic boundaries, mass (but not momentum) is conserved. Following Ladd and
Verberg [21], Guo et al. [20] show that to recover Navier–Stokes behaviour in a lattice fluid subject to a var-
iable external force, g(r), it is necessary to re-define the lattice fluid velocity of Eq. (9):
qv ¼ Rifici þ
1

2
g; ð22Þ
and (as we show in Appendix 1, using the analysis of Guo et al.) to re-interpret the fluid strain rate, Sab.
Consider LB fluid under a constant external force. Boundary and bulk fluid should be under the same exter-

nal force. We assume this force is known; the problem we seek to address is that the corresponding source term
does not conserve mass on that subset of lattice links which are not cut by the boundary (see Fig. 1, in which
links indexed i ¼ 1; 2; 3 are cut by a horizontal boundary). Put more precisely, partial totals of a source term
are not necessarily zero:
R0i/i 6¼ 0; ð23Þ
where the symbol R0i indicates a summation over a restricted range of subscript i, which excludes the value(s) of
i corresponding to cut link(s).

In our analysis below that an effective fluid velocity (which may correspond to a pre-calculated slip from a
chosen model eg Eq. (2), note) and external force must always be known on the boundary. For simplicity we
shall assume, in the main part of this article, that the fluid is under a constant external force, like gravity. The
adjustments necessary to incorporate variable external forces into our analysis are detailed in Appendix 1.
3. Lattice closure algorithm for forced boundary fluid

Mass conservation is a widely used assumption when closing LB simulations with Dirichlet boundary con-
ditions. This assumption becomes unavoidable when multiple fluids are in contact at a solid boundary. We
aim here to calculate momentum densities, fi, for links of a boundary node which (i) evolve according to rules
equivalent to those governing bulk nodes, (ii) are consistent with a known, local, boundary velocity (including
a slip velocity), (iii) are consistent with a known constant external force and (iv) will conserve mass locally.

3.1. Planar boundary

For definiteness, consider the planar boundary site on the LBGK D2Q9 lattice shown in Fig. 1. The dotted
line indicates the uppermost extent of the lattice fluid. Links i ¼ 1; 2; 3 are cut. At the end of a propagation
step, a pre-collision value of fi, exists for all incoming links i 6¼ 5; 6; 7; a situation represented by use of empty
circles. It is necessary impress an external force on the boundary fluid; that is, to use a source term /i in Eq.
(3). Say that the node of Fig. 1 bounds a flow driven by a uniform, external body force in the x-direction,
representing gravity, this force is obtained from a source term /i ¼ tpGcix, where G ¼ g

c2
s
.

Relative to Fig. 1, denote as live those links which require post-collision values of f yi ; links i 6¼ 1; 2; 3 in
Fig. 1 are live, for they connect into the flow domain. fis on dead links propagate into the boundary. For
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the geometry of Fig. 1, pre-collision fis exist on incoming links i ¼ 0; 1; 2; 3; 4; 8; post-collision f yi s are required
only for live links i ¼ 0; 4; 5; 6; 7; 8.

Boundary mass conservation is defined by equality between partial sums of the fis and (different) partial
sums of the f yi s. For the geometry of Fig. 1, mass conservation is
M �
X

i6¼5;6;7

fi

 !
¼
X

i 6¼1;2;3

f yi : ð24Þ
Applying a force on boundary nodes does not conserve mass on live links. Again for the geometry of Fig. 1, a
mass:
dM ¼
X

i 6¼1;2;3

/i ð25Þ
is introduced into the flow domain by the macroscopic force.
We think of nodes as being evolved by collision and propagation, with collisions described by Eq. (17). We

construct post-collision, boundary fis, instantaneously correct to the accuracy of the bulk LB model in 4 steps:

1. Determine M ðdMÞ from an appropriate form of Eq. (24) ((25)):
M ¼
X

incoming

fi; ð26Þ

dM ¼
X
live

/i: ð27Þ
2. Determine the f ð0Þi ðq0; u0Þs from effective density, q0:
X
live

f ð0Þi ðq0; u0Þ ¼ M � dM ; ð28Þ

summation being taken over is corresponding to live links: M, ðdMÞ being defined in Eq. (26), ((27)).
3. Determine pre-collision f ð1Þi s from an under-specified system after Eqs. (13) and (16).
4. Collide the boundary sites using Eq. (17).

A few remarks before detailing steps 1 . . .4 above. We note that the condition of boundary mass conserva-
tion is satisfied only after the completion of final step (4). Also, the under-specified system solved for the f ð1Þi s
in step (3) is an adaptation of ðDþ 1ÞðD=2þ 1Þ Eqs. (13) and (16), namely:
X

live

f ð1Þi ¼ 0; ð29Þ
X

i

f ð1Þi cia ¼ 0; ð30Þ
X

i

f ð1Þi cciab ¼ 2q0mSab; ð31Þ
where, note, the range of i-summation in Eq. (29) only is restricted, whilst that in Eqs. (30) and (31) is not. This
maintains consistency correspondence with the bulk algorithm whilst ensuring that the f ð1Þi s have zero contri-
bution to the total mass on live links.

In the above system of Eqs. (29) and (30) are independent of particular LB model, however the DðDþ 1Þ=2
Eq. (31) depend upon model through the Xij (see Eq. (15)). Finally we note that the corresponding, post-col-
lision, values f ð1Þyi are a simple linear combination of the solution of Eqs. (29)–(31) above (see Eq. (18)).

Step 1: Evaluate M and dM using the definitions in Eqs. (24) and (25) respectively.
Step 2: The boundary (or slip) velocity u0 is known. Eqs. (7) and (28) provide an identity for effective

boundary node density, q0:
q0 ¼ M � dMP
live

P ð0Þðu0 � ciÞ
: ð32Þ
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For the example geometry of Fig. 1 and the corresponding LBGK equilibrium, Eq. (32) is
q0 ¼ M � dMP
i6¼1;2;3

tp 1þ u0�ci

c2
s
� u2

0

2c2
s
þ ðu0�ciÞ2

2c4
s

h i ¼ 6ðM � dMÞ
5þ 3u0y � 3u2

0y

; ð33Þ
in which, note, velocity component u0x does not appear. To evaluate dM from Eq. (27) (or Eq. (25)) requires
the values of live source terms, /i. For our chosen example (a uniform body force in the x-direction, recall)
/i ¼ tpGcix:
dM ¼ G
X

i6¼1;2;3

tpcix: ð34Þ
It is now possible to assign q0 from Eq. (33) and hence obtain f ð0Þi ðq0; u0Þ.
Step 3: For our chosen example boundary, flow and model equations (29)–(31) yield:
X

i6¼1;2;3

f ð1Þi ¼ 0; ð35Þ
X

i

f ð1Þi cia ¼ 0; a ¼ x; y; ð36Þ

X
i

f ð1Þi ciacib ¼ �
2

3
q0sSab; a ¼ x; y; b ¼ x; y; ð37Þ
in the last of which we have used Eqs. (15) and (4). Here then, nine f ð1Þi ; i ¼ 0 . . . 8 satisfy the six Eqs. (35)–(37)
re-formatted below:
f ð1Þ0 þ 0f ð1Þ1 þ 0f ð1Þ2 þ 0f ð1Þ3 þ f ð1Þ4 þ f ð1Þ5 þ f ð1Þ6 þ f ð1Þ7 þ f ð1Þ8 ¼ 0;

f ð1Þ0 þ f ð1Þ4 þ f ð1Þ5 þ f ð1Þ6 þ f ð1Þ7 þ f ð1Þ8 ¼ 0;

�f ð1Þ1 þ f ð1Þ3 þ f ð1Þ4 þ f ð1Þ5 � f ð1Þ7 � f ð1Þ8 ¼ 0;

f ð1Þ1 þ f ð1Þ2 þ f ð1Þ3 � f ð1Þ5 � f ð1Þ6 � f ð1Þ7 ¼ 0;

f ð1Þ1 þ f ð1Þ3 þ f ð1Þ4 þ f ð1Þ5 þ f ð1Þ7 þ f ð1Þ8 ¼ �2qs=3Sxx;

f ð1Þ1 þ f ð1Þ2 þ f ð1Þ3 þ f ð1Þ5 þ f ð1Þ6 þ f ð1Þ7 ¼ �2qs=3Syy ;

�f ð1Þ1 þ f ð1Þ3 � f ð1Þ5 þ f ð1Þ7 ¼ �2qs=3Sxy :

ð38Þ
The absence of f ð1Þ1 ; f ð2Þ2 and f ð3Þ3 from the first of Eq. (38) (which derives from Eq. (35)) has been emphasized.
Note, the surface strain rates in the right hand side of last three equations must all be determined, in our case
using spatially oð3Þ accurate finite-differences. Note that in the case of slip, these finite difference expressions,
which involve the instantaneous surface slip velocity, were assumed simply to assign a quasi-statically devel-
oping slip velocity at the next time.

When applying our LB method to other models, differences must be assumed to arise a this point. For a 3D
LBGK model, a system similar to Eq. (14) results; for general LB models the system of equations correspond-
ing to Eq. (38) would contain coefficients of the f ð1Þi s which are linear combinations of the Xijs (see e.g. Eq.
(14)).

To solve the under-determined system of Eq. (38), select a triplet of known f ð1Þi s as free variables. Certain
triplets of the free f ð1Þi s are forbidden, which may be understood as follows. Defining quantities:
g1 � f ð1Þ1 þ f ð1Þ2 þ f ð1Þ3 ;

g2 � f ð1Þ5 þ f ð1Þ6 þ f ð1Þ7 ;

g3 � f ð1Þ3 þ f ð1Þ4 þ f ð1Þ5 ;

g4 � f ð1Þ1 þ f ð1Þ7 þ f ð1Þ8 ;

g5 � f ð1Þ0 þ f ð1Þ4 þ f ð1Þ8 ;

ð39Þ
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the first five of the six Eq. (38) may be written:
Table
Diagra

Forbid

f ð1Þ1 ; f ð2

f ð1Þ3 ; f ð4

f ð1Þ5 ; f ð6

f ð1Þ1 ; f ð7

f ð1Þ0 ; f ð4

The sm
g2 þ g5 ¼ 0;

g3 � g4 ¼ 0;

g1 � g2 ¼ 0;

g3 þ g4 ¼ �2qs=3Sxx;

g1 þ g2 ¼ �2qs=3Syy

ð40Þ
which system (40) may be solved for the g1::g5 in terms of the Sab. The value of (say) g1 so obtained constrains
the sum f ð1Þ1 þ f ð1Þ2 þ f ð1Þ3 ; accordingly f ð1Þ1 ; f ð1Þ2 and f ð1Þ3 cannot all be assigned; cannot all be free variables. For-
bidden triplets of free f ð1Þi s for our example system are defined in Table 1, alongside a diagrammatic interpre-
tation. Note, the sixth equation in the system 38 cannot be expressed in terms of g1 . . . g5.

Above we referred to known f ð1Þi s. In addition to the structure of system (40), the set of three f ð1Þi s selected as
free variables should depend upon which links, ci, contain information originating from within the flow
domain. To solve Eqs. (35)–(37) then, we use free variable f ð1Þi s which (i) do not comprise a forbidden set
and (ii) have accessible values.

We choose as free variables in the solution of Eqs. (35)–(37):
f ð1Þi � fi � f ð0Þi ðq0; u0Þ
� �

; i ¼ 0; 1; 2; ð41Þ
in terms of which the solution (of system of Eqs. (38)) is
f ð1Þ3 ¼ �jSyy � f ð1Þ1 � f ð1Þ2 ;

f ð1Þ4 ¼ 3

2
jSyy � jSxy �

1

2
f ð1Þ0 þ 2f ð1Þ1 þ f ð1Þ2 ;

f ð1Þ5 ¼ �jSxx �
1

2
jSyy þ jSxy þ

1

2
f ð1Þ0 � f ð1Þ1 ;

f ð1Þ6 ¼ 2jSxx � jSyy � f ð1Þ0 � f ð1Þ2 ;

f ð1Þ7 ¼ �jSxx þ
1

2
jSyy � jSxy þ

1

2
f ð1Þ0 þ f ð1Þ1 þ f ð1Þ2 ;

f ð1Þ8 ¼ � 1

2
jSyy � jSxy �

1

2
f ð1Þ0 � 2f ð1Þ1 � f ð1Þ2 ;

ð42Þ
where
j � c2
s qs: ð43Þ
Our choice of free variables f ð1Þi ; i ¼ 0; 1; 2 is not unique. We shall return to this point in Section 4.
1
mmatic representation of the forbidden triplet combinations of f ð1Þi s as free variables for the planar boundary geometry of Fig. 1

den set of three free f ð1Þi s Link representation
1Þ
; f ð1Þ3

1Þ
; f ð1Þ5

1Þ
; f ð1Þ7

1Þ
; f ð1Þ8

1Þ
; f ð1Þ8

all (large) dot represents inclusion (exclusion) of the rest link.
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Step 4: The pre-collision boundary node f ð1Þi s constructed in step 2 are collided, using Eq. (17), then added
to the corresponding f ð0Þi ðq0; u0Þ, yielding a post-collision momentum density:
Fig. 2.
denote
arrowh
f yi ðr; tÞ ¼ f ð0Þi ðq0; u0Þ þ
X

i

ðdij � XijÞf ð1Þj þ /i; ð44Þ
which, for the example LBGK system, reduces to:
f yi ðr; tÞ ¼ f ð0Þi ðq0; u0Þ þ 1� 1

s

� �
f ð1Þi þ /i; ð45Þ
Before proceeding to consider other boundary shapes (corners), a few remarks are in order. We note that the
analysis of this section is valid, stability issues notwithstanding, for any value of collision parameter s. Of
course, the choice of the free variables should not affect the accuracy or stability of the resulting closure
scheme. We shall return to this issue in Section 4.

3.2. Application to complex geometry

We illustrate the versatility of the method outlined in Section 3.1 by treating, albeit in less detail, internal
and external corners. Consider our example D2Q9 LBGK system system.

Internal corner. Fig. 2 shows a top left internal corner boundary node. The dotted line shows the supposed
location of the boundary. Quantities f3; f7 (links represented by broken lines) are ghost (not, note, dead) quan-
tities which never participate. f y0 ; f

y
4 ; f

y
5 and f y6 are required. For the geometry of Fig. 2 the appropriate value of

M is
M �
X

i6¼3;4;5;6;7

fi; ð46Þ
and the value of q0 is therefore given by
q0 ¼ M � dMP
i6¼1;2;3;7;8tp 1þ u0�ci

c2
s
� u2

0

2c2
s
þ ðu0�ciÞ2

2c4
s

h i ; ð47Þ
A boundary node on a ‘top left’ internal corner, immediately prior to a collision step. The supposed locations of the rest walls are
d by the dashed lines. Links i ¼ 0; 5; 6; 6 are live. Note, the i ¼ 0 link lies in the fluid. fis exist (do not exist) for links depicted with an
ead (open circle). Ghost links, which never participate, are indicated by open arrowheads.
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where dM is the mass associated with the source terms to be added on the live links (see Eq. (25)):
Fig. 3.
exist (d
dM �
X

i 6¼1;2;3;7;8

/i: ð48Þ
With some straightforward algebra:
q0 ¼ 36ðM � dMÞ
25þ 15u0x � 15u0y � 9u0xu0y � 15u2

0x � 15u2
0y

: ð49Þ
The condition corresponding to Eq. (35) for this geometry is
X
i6¼1;2;3;7;8

f ð1Þi ¼ 0: ð50Þ
Solving for pre-collision f ð1Þi s follows the procedure in Section 3.1. No forbidden triplets of obtainable f ð1Þi s
arise for the case of 2D, D2Q9 internal corner geometry.

External corner. Fig. 3 shows an external corner. The dotted line shows the supposed location of the bound-
ary. f y0 ; f y1 ; f y2 ; f y3 , f y4 ; f y6 ; f y7 and f y8 are required. For M ; dM and q0 we now have:
M ¼
X
i6¼1

fi; ð51Þ
and:
dM ¼
X
i6¼5

/i: ð52Þ
and (after some algebra):
q0 ¼ 36ðM � dMÞ
35� 3u0x � 3u0y þ 3u2

0x þ 9u0xu0y � 3u2
0y

: ð53Þ
A boundary node on an external corner. The rest walls’ locations are denoted by the dashed lines; the i ¼ 0 link lies in the fluid. fis
o not exist) for links depicted with an arrowhead (open circle).



Table 2
Diagrammatic representation of the forbidden triplet combinations of f ð1Þi s as free variables, for the external corner geometry of Fig. 3

Forbidden set of three free f ð1Þi s Link representation

f ð1Þ0 ; f ð1Þ6 ; f ð1Þ7

f ð1Þ0 ; f ð1Þ4 ; f ð1Þ3

Note that the large dot indicates that the rest link is included. Unlike Table 1, only triplet combinations which contain three f ð1Þi s all of
which may be evaluated in practice are listed here.
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The mass conservation condition corresponding to Eq. (35) for this geometry is
Fig. 4.
a num
X
i6¼5

f ð1Þi ¼ 0: ð54Þ
Solving for pre-collision f ð1Þi s again follows the procedure in Section 3.1. Triplets of evaluatable f ð1Þi s now for-
bidden are listed in Table 2. Clearly other geometries and other situations are amenable to the boundary anal-
ysis of this section. Situations in 3D, corresponding to any number of cut links are a straightforward
generalization of current method. Further extension to off-lattice boundaries is more complicated; it requires
no fundamental modification to the method.

4. Analysis and results

In order to assess our method for time-dependant boundary conditions, we considered the development of
incompressible flow in a uniform channel, width W, bounded by stationary surfaces y ¼ constant and, in the
horizontal direction, by periodic boundary conditions. Flow was driven (for t > 0) by a uniform pressure gra-
dient oP

ox ¼ g corresponding to /i ¼ tpGcix at t ¼ 0þ and the lattice fluid was initialized by assigning
fiðr; 0Þ ¼ f ð0Þi ðq; 0Þ everywhere. Note that G ¼ 3g [22]. To generate additional interest the planar boundaries
y ¼ 0�;W þ were assumed to admit slip, described by a slip velocity instantaneously in accord with Eq. (2).
A range of slip lengths b ¼ 0:005; 0:05; 0:5 were used. With no-slip boundary conditions, the corresponding
flow has a characteristic time [2]:
T 0 ¼
m

W 2
: ð55Þ
vs=V 0, the instantaneous slip velocity, normalized to the slip velocity measured at t ¼ T 0=2, was obtained from
a numerical solution (explicit, time-marching scheme) of the 2D, time-dependant Navier–Stokes equations, for
times t < T 0=2; this solution is, in Fig. 4, found to be in excellent agreement with values obtained from the
corresponding LB simulations using our boundary closure, over the range of slip lengths.
Evolution of the boundary slip velocity in pressure-driven duct flow. The time normalization parameter is T 0 ¼ m
W 2. The line shows

erical solution, the open triangles (squares) ((diamonds)) correspond to slip length b ¼ 0:005 ðb ¼ 0:05Þ ððb ¼ 0:5ÞÞ.
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Consider now the steady state corresponding to the flow considered above, now with no-slip, Dirichlet
boundary conditions. Invoking translational invariance in the x-direction and the fact that q ¼ constant
everywhere, it is straightforward to obtain the steady-state solution, ðv0ðyÞ; 0Þ, to the lattice fluid’s Navier–
Stokes equation (20):
Fig. 5.
unifor
visible
differe
data se
set (b)
v0ðyÞ ¼
G

6qm
yðW � yÞ; ð56Þ
which we now proceed to use quantitatively to assess the accuracy of the solution obtained from simulations
closed using the method of Section 3.1.

Flow rate and hence Reynolds’ number:
Re � �vW
m
¼ GW 3

36qm2
ð57Þ
was controlled by the value of G used in the source term /i ¼ tpGcix of the LBGK adapted evolution Eq. (3). A
total absolute error:
DW �
X
y 6¼0

jvmðyÞ � v0ðyÞj; ð58Þ
was defined, where vmðyÞ denotes the simulated, parabolic profile obtained with the boundary closure method
of Section 3.1. vmðyÞ was measured at constant Re ¼ 0:5 for a range of lattice widths (resolutions)
W ¼ 10� 2N ; N 6 5.

The data of Fig. 5 shows the value of log10ðDW Þ as a function of resolution, measured by log10W . The col-
lision parameter for this particular data was s ¼ 2=3, however, use of s ¼ 1; 2 produce no change in the data
presented in Fig. 5 visible to the eye, as discussed below.

The results in Fig. 5 comprise two almost overlying, sets of points (a) and (b). Data set (a) is comprised of
open squares and diagonal crosses, data set (b) of open circles and erect crosses. Sets (a) and (b) are based
Error, DW , defined in Eq. (58), as a function of lattice resolution, W, for our method of Section 3.1 for pressure driven flow in a
m duct y ¼ 0;W at constant Re ¼ 0:5. LB collision parameter s ¼ 3=2 for this data. Values s ¼ 1; 2 produce no change in the data
to the eye. The results in this figure comprise two almost overlying, sets of points (a) and (b). Data sets (a) and (b) are based upon

nt choices of the free variable f ð1Þi s – for the planar boundary of Section 3.1, set (a) corresponds to i ¼ 0; 1; 2, set (b) to i ¼ 0; 3; 4. In
t (a) open squares (diagonal crosses) represent unforced boundaries /i ¼ 0; y ¼ 0;W (forced boundaries /i 6¼ 0; y ¼ 0;W ). In data
open circles (erect crosses) represent unforced boundaries /i ¼ 0; y ¼ 0;W (forced boundaries /i 6¼ 0; y ¼ 0;W ).
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upon different choices of the free variable f ð1Þi s; in terms of the planar boundary y ¼ W of Section 3.1, set (a) is
characterised by choice i ¼ 0; 1; 2, set (b) to choice i ¼ 0; 3; 4. We return to this point below. In data set (a)
open squares (diagonal crosses) represent unforced boundaries /i ¼ 0; y ¼ 0;W (forced boundaries /i 6¼ 0;
y ¼ 0;W ). In data set (b) open circles (erect crosses) represent unforced boundaries /i ¼ 0; y ¼ 0;W (forced
boundaries /i 6¼ 0; y ¼ 0;W ). In both sets (a) and (b), omitting the boundary force produces a linear variation
in log10W with log10W of gradient � �2, characteristic of a spatially second-order accurate scheme; in the case
of forced boundaries y ¼ 0;W , the method of Section 3.1 appears to achieve a solution exact to machine pre-
cision, over the range of resolutions considered.

The fact that both data sets (a) and (b) in Fig. 5 correlate very well implies that our boundary closure
method is insensitive to the choice of free variable f ð1Þi s. Our results also appear to show that the method is
stable over a range of values of collision parameter 2=3 < s < 2.

Fig. 6 shows corresponding reference data, obtained from two variants of bounce back boundary condi-
tions. All data were obtained with collision parameter s ¼ 1, corresponding to a known optimum of perfor-
mance in the bounce-back method. In its defence, it should be noted that bounce back is adaptable, robust,
versatile and easy to implement for both LBGK and LB methods, to generate staircase boundaries. That said,
the limitations of the first-order accurate ‘on-link’ variant (open squares) are clear. Applying a boundary force
to this method (open circles) apparently leaves the data unaffected. Mid-link bounce-back (diagonal crosses)
approaches second order accuracy, almost certainly because its implementation here corresponds to drawing
reflected fis from an ideally placed image of the channel with reversed flow (impossible in with a more complex
geometry, note). For similar reasons, mid-link bounce-back with a boundary force (erect crosses) it achieves a
small error, again approaching second order accuracy. None of the bounce-back methods recorded in Fig. 6
achieve the accuracy of the forced-boundary method of Section 3.1; neither can they be used to represent mov-
ing boundaries or boundaries. Discounting on-link bounce back, the data with the boundary forced has the
smallest error. Symmetry arguments suggest that, with appropriate care, a forcing strategy for the mid-link
bounce-back method applied to the present geometry might be devised, which promotes its accuracy to that
of the current method. Clearly, this effort would have vary limited value.
Fig. 6. Error, DW , defined in Eq. (58), as a function of lattice resolution, W, for mid-link and nodal bounce-back boundary conditions.
This data was obtained for pressure driven flow in a uniform duct y ¼ 0;W with constant Re ¼ 0:5. For all data in this figure, the collision
parameter s ¼ 1, corresponding to an optimum of performance for the bounce-back boundary method. Open squares (circles) correspond
to nodal bounce-back (nodal bounce-back with a boundary body-force). Diagonal (erect) crosses correspond to mid-link bounce-back
(mid-link bounce-back with a boundary body-force).
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In order to demonstrate the ability of our method to handle both a boundary force and a boundary veloc-
ity, sheared, duct flow was simulated. Shear and a uniform pressure gradient were simultaneously applied to
an incompressible fluid, again confined in a uniform channel of constant width W ¼ 80, bounded by surfaces
y ¼ 0; 80. Flow was driven by (i) a uniform pressure gradient, G ¼ 3g, and (ii) a constant motion of the y ¼ W
boundary, which moved at velocity u0x̂. Various values u0 and G consistent with a constant Re ¼ 0:5 were
used. For such unidirectional flow it is possible to superpose solutions of the uni-directional (linearized)
Navier–Stokes equations with appropriate boundary conditions. In LB (lattice) units, the exact axial velocity
profile is
Fig. 7.
Re ¼ 0
v0ðyÞ ¼
G

6qm
yðW � yÞ þ u0

W
y: ð59Þ
Figs. 7 and 8 show the variation of such axial velocity profiles, v0ðyÞ, with distance, y. Fig. 7 shows simulation
data obtained for collision parameter s ¼ 1 for u0 ¼ 1� 10�3; 2� 10�3; 3� 10�3; Fig. 8 shows simulation
data for s ¼ 2=3 for u0 ¼ 6� 10�3; 7� 10�3; 9� 10�3, where all velocities are in LB units. In all cases,
any difference with the analytical result above, in Eq. (59) is too small to be visible in Figs. 7 and 8, the error,
DW , taking an average value of �7.8, a value consistent with that in shown Fig. 5.

To asses the internal corner boundary closure of Section 3.2 a square, 2D lid-driven cavity with boundaries
y ¼ 0; x ¼ 0;W and a moving lid y ¼ W was simulated. This lid is taken to move with velocity u0. Later we
will set u0 ¼ u0êx. To obtain results which may validated in an original way and to illustrate the adaptability of
our method, we introduce at this point a model variant. It is possible to simulate at Re ¼ 0 by using an
adapted D2Q9 LBGK scheme, after Ladd and Verberg, [21]. Following Ladd and Verberg, simplify the equi-
librium distribution:
f ð0Þi ¼ tpq 1þ 1

c2
s

v:ci

� �
; ð60Þ
producing a D2Q9 LBGK model otherwise identical to that considered in Sections 2 and 3.1. Analyzing with
the particular Chapman–Enskog approach of Hou et al. in Ref. [19], it is possible to obtain a steady-state

behaviour:
Sheared, pressure driven flow velocity profiles obtained from simulations using our boundary closure of Section 3.1. For this data,
:5, collision parameter s ¼ 1 and the right-hand wall velocity u0 ¼ 1� 10�3; 2� 10�3; 3� 10�3, where all velocities are in LB units.



Fig. 8. Sheared, pressure driven velocity profiles obtained from simulations using our boundary closure of Section 3.1. For this data,
Re ¼ 0:5, collision parameter s ¼ 2=3 and the right-hand wall velocity u0 ¼ 6� 10�3; 7� 10�3; 9� 10�3.

Fig. 9. Corner detail of the rectangular stream function contours of a steady-state, 2D, square lid-driven cavity. This data was obtained
for Re ¼ 0 Stokes flow. The large system size of 150 lattice units and the small lid velocity underly the good correspondence with the
analytical solution of corner flow, shown in Fig. 10. w ¼ 0 on x ¼ 0; y ¼ 0; the maximum value of w corresponds to w ¼ 1:05� 10�4.
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o

oxb
qvb ¼ 0;

1

6
ð2s� 1Þr2qvb �

1

3

o

oxb
q ¼ 0; ð61Þ
which, with replacement v! qv, represents the Stokes equations with pressure P ¼ 1=3q and shear viscosity
g ¼ 1=6ð2s� 1Þ. The results of Section 3 may be modified for this revised model. For example, in Section 3.1,
Eq. (33) for the density is modified for use with the truncated equilibrium in Eq. (60):



Fig. 10. Rectangular stream function, w, contours for two dimensional flow into a right-angled corner; 130 < x < 150; 130 < y < 150;
w ¼ 0 on x ¼ 0; y ¼ 0; the maximum value of w corresponds to w ¼ 9:5� 10�5, in good agreement with the result in Fig. 9. Note the
different contour interval in this image.
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q0 ¼ M � dMP
i6¼1;2;3

tp 1þ u0�ci

c2
s

h i ¼ 6M
5þ 3u0y

; ð62Þ
in which dM ¼ 0, corresponding to no boundary force. Similar modifications must be made to the expressions
for q0 in the case of the internal corner, in Eq. (49):
q0 ¼ 36ðM � dMÞ
25þ 24u0x � 15u0y

: ð63Þ
Using Eq. (60), the equilibrium, f ð0Þi , component of the boundary fis was assigned; boundary f ð1Þi s were cal-
culated and the post-collision distribution assembled precisely after the method of Section 3.1.

Fig. 9 shows detail of the steady-state rectangular stream function, close to a corner of a rectangular, 2D,
square lid-driven cavity. Here the stream functions should approximate the known solution of flow into a cor-
ner [26], which appears in Fig. 10, for reference. The large system size of 150 lattice units and the small lid
velocity 1:0� 10�4 underly encouraging correspondence with Fig. 10.

5. Conclusions

We have set-out and validated a very adaptable and accurate method for closing a lattice Boltzmann
LBGK simulation lattice. Our method allows for both boundary motion and boundary fluid forces and its
derivation demonstrates an accuracy consistent with the corresponding bulk scheme, it is instantaneously
accurate and robust in that it functions with unimpaired accuracy for a range of values of LBGK collision
parameters.

We have developed our boundary closure method for key flat and corner geometries; it may be applied to
others. Overall we suggest that our method is as adaptable in this respect as popular bounce-back methods
but, in addition, it has the added advantages of tractability, the capacity to handle both moving and stationary
boundaries and the capacity to accommodate a fluid force at the boundary. The latter is of special significance
to the wetting problem, to which we aim to apply our method.
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Appendix 1

In Section 3 a mass-conserving boundary closure algorithm was developed for a lattice fluid under a con-
stant external force, like gravity. Here we detail the adjustments necessary in the analysis of Section 3 to
account for variable external forces. Although simple an straightforward, these modifications strengthen
the method considerably, opening-up a way correctly to include interfacial forces at the boundary.

Using the notation of Guo et al. [20] we will now show that, directly to generalize our analysis in Section 3 it
is also necessary to re-interpret the fluid strain rate, Sab. We shall then state how the treatment of Section 3
should be modified to include variable external forces.

As previously stated, Guo et al. [20] showed that to recover Navier–Stokes behaviour in a lattice fluid sub-
ject to a variable external force, F(r), it is necessary to re-define the lattice fluid velocity of Eq. (9) [20]:
qv� ¼ Rifici þ
1

2
F; ð64Þ
where v� is the fluid velocity. Note that it is v� which is assumed on the boundary, so, for example, a no-slip
boundary would have v� ¼ 0.

For the variable force LB model of Guo et al. equations (12) and (16) of Ref. [20] yield, after some straight-
forward algebra, an expression for the second moment of the f ð1Þi s which replaces that given in Eq. (16) of
Section 3:
Rif
ð1Þ
i ciacib ¼ �

Dt
2

v�aF b þ v�bF a

� �
� 2c2

s sqS�ab; ð65Þ
where S�ab ¼ 1
2
ðov�

b

oxa
þ ov�a

oxb
Þ may be measured on the boundary.

Remembering that we have used dt ¼ 1, set Dt ¼ dt ¼ 1, Eq. (65) may then be made to coincide with Eq.
(16) by making the replacement:
Sab ! S�ab þ
1

4sqc2
s

v�aF b þ v�bF a

� �
: ð66Þ
Recall, in our lattice closure method of Section 3, the boundary velocity and force are assumed to be known.
Accordingly, all the terms in the right hand side of the map 66 may be evaluated. Therefore, simply by using
the adjusted calculation of the measured boundary strain-rate, suggested by the map 66 above, our boundary
closure method of Section 3 generalizes to the case of fluids under a variable external force.
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